Abstract

The leakage of gadolinium ions (Gd3+) from commercial Gd3+-based contrast agents (GBCAs) in patients is currently the major safety concern in clinical magnetic resonance imaging (MRI) scans, and the lack of task-specific GBCAs limits its usage in the early detection of disease and imaging of specific biological regions. Herein, ultrastable GBCAs were constructed via decorating chiral Gd-DOTA with a phenylic analogue to one of the pendent arms, and the stability constant was determined as high as 27.08, accompanied by negligible decomplexation in 1 M of HCl over 2 years. A hepatic-specific chiral Gd-DOTA was screened out as a potential alternative to commercial Gd-EOB-DTPA, while combination with functional molecules favored chiral Gd-DOTA as tumor targeting probes. Therefore, the novel chiral Gd-DOTA is believed to be an ideal platform for designing the next generation of GBCAs for various clinical purposes due to its outstanding inert nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.