Abstract

Various chiral pesticides are used in greenhouses to ensure high crop yields. However, detailed knowledge on the environmental behavior of such chiral contaminants with respect to enantioselectivity in the greenhouse has received little attention so far. Here, the widely used fungicide triadimefon was chosen as a “chiral probe” to investigate its enantioselective degradation and formation of triadimenol in greenhouse tomato, cucumber, and soil under different application modes. In addition, the stereoselectivity of individual isomers of triadimefon and triadimenol in aquatic toxicity were first studied. Significant differences in their acute toxicity to Daphnia magna were observed among the isomers. Under foliage application or soil irrigation application, S-(+)-triadimefon was preferentially degraded, resulting in relative enrichment of the more toxic R-(−)-enantiomer in tomato, cucumber, and soil. Further enantioselective analysis of converted triadimenol showed that the compositions of the four product stereoisomers were different and closely dependent on environmental conditions: the most toxic RS-(+)-triadimenol was the most preferentially produced isomer in tomato under foliage treatment, while the RR-(+)-triadimenol was proved to be the highest amount of metabolite isomer in cucumber and soil under both treatment modes and in tomato under soil treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.