Abstract
We present a fully dynamical model to study nonequilibrium effects in both the chiral and the deconfinement phase transition. The sigma field and the Polyakov loop as the corresponding order parameters are propagated by Langevin equations of motion. The locally thermalized background is provided by a fluid of quarks and antiquarks. Allowing for an exchange of energy and momentum through dissipative and stochastic processes we ensure that the total energy of the coupled system remains conserved. We study its relaxational dynamics in different quench scenarios and are able to observe critical slowing down as well as the enhancement of long wavelength modes at the critical point. During the fluid dynamical expansion of a hot plasma fireball typical nonequilibrium effects like supercooling and domain formation occur when the system evolves through the first order phase transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.