Abstract
The chiral equivariant cohomology contains and generalizes the classical equivariant cohomology of a manifold M with an action of a compact Lie group G. For any simple G, there exist compact manifolds with the same classical equivariant cohomology, which can be distinguished by this invariant. When M is a point, this cohomology is an interesting conformal vertex algebra whose structure is still mysterious. In this paper, we scratch the surface of this object in the case G = SU(2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Communications in Mathematical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.