Abstract

Chiral light sources realized in ultracompact device platforms are highly desirable for various applications. Among active media used for thin-film emission devices, lead-halide perovskites have been extensively studied for photoluminescence due to their exceptional properties. However, up to date, there have been no demonstrations of chiral electroluminescence with a substantial degree of circular polarization (DCP) based on perovskite materials, being critical for the development of practical devices. Here, we propose a concept of chiral light sources based on a thin-film perovskite metacavity and experimentally demonstrate chiral electroluminescence with a peak DCP approaching 0.38. We design a metacavity created by a metal and a dielectric metasurface supporting photonic eigenstates with a close-to-maximum chiral response. Chiral cavity modes facilitate asymmetric electroluminescence of pairs of left and right circularly polarized waves propagating in the opposite oblique directions. The proposed ultracompact light sources are especially advantageous for many applications requiring chiral light beams of both helicities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.