Abstract

A luminescent double recognition nanoprobe is described as a new strategy for the selective determination of chiral molecules. C-dots/Ir/Au fluorescent nanoparticles, synthesised under hydrothermal conditions, are used as a high-performance probe in combination with a molecularly imprinted polymer (MIP) and calix[6]arene as a double recognition element. Thiolated calix[6]arene is grafted on C-dots/Ir/Au as the first recognition element, which then forms a host-guest complex with the target molecule levodopa (L-DOPA). Subsequently, an MIP is prepared on the C-dots/Ir/Au (MIP/C-dots/Ir/Au) by chemical polymerisation. After the removal of L-DOPA, double recognition imprinting cavities are formed. The fluorescence intensity at 478nm of the nanoprobe is effectively quenched by adsorption of L-DOPA on MIP/C-dots/Ir/Au, which provides a method for L-DOPA determination. Owing to the double recognition strategy, this method has excellent selectivity which can effectively avoid interference from enantiomer D-DOPA, and a imprinting factor of 7.1 is obtained for L-DOPA. This accurate and reliable method, with a wide linear range (5 × 10-10 to 1.2 × 10-7molL-1) and a low limit of detection (1.45 × 10-10molL-1), was successfully applied to the determination of L-DOPA in real samples, giving standard recoveries of 89.7-110.0%. Thus, the proposed sensing method provides a viable approach for the determination of a single enantiomer. Graphical abstract Schematic presentation of the MIP/C-dots/Ir/Au for L-DOPA detection. A fluorescence double chiral recognition nanoprobe is prepared of C-dots/Ir/Au nanoparticles as signal probe, and a molecularly imprinted polymer (MIP) and calix[6]arene as a double recognition element. Owing to the double recognition strategy, this method has strong specificity and can effectively avoid interference from enantiomers and racemates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.