Abstract
A methodology has been developed for enantiodiscriminating chiral monoalcohols and monoamines by mass spectrometry. The approach is based on the generation of supersonically expanded complexes of these molecules with suitable chromophores, i.e. R-(+)-1-phenyl-ethanol (ER) or R-(+)-1-phenyl-1-propanol (PR). The jet-cooled diastereomeric complexes, otherwise elusive at room temperature, have been ionized by one-color resonant two-photon absorption (R2PI) and their fragmentation pattern analyzed by time-of-flight (TOF) spectrometry. Enantiodifferentiation of the chiral monoalcohols and monoamines is based on: (1) the different spectral shifts of the band origin of their molecular complexes relative to that of the bare chromophore (Δ) and (2) the different mass spectral fragmentation patterns of the jet-cooled diastereomeric adducts. Detection of stable aggregates of methane, n-butane, and other simple molecules with the selected chromophores suggests that the R2PI/TOF method can be a potential tool for enantiodifferentiating chiral hydrocarbons in the gas phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.