Abstract

Chiral differential operators (CDOs) are closely related to string geometry and the quantum theory of 2-dimensional σ-models. This paper investigates two topics about CDOs on smooth manifolds. In the first half, we study how a Lie group action on a smooth manifold can be lifted to a “formal loop group action” on an algebra of CDOs; this turns out to be a condition on the equivariant first Pontrjagin class. The case of a principal bundle receives particular attention and gives rise to a type of vertex algebras of great interest. In the second half, we introduce a construction of modules over CDOs using the said “formal loop group actions” and semi-infinite cohomology. Intuitively, these modules should have a geometric meaning in terms of “formal loop spaces”. The first example we study leads to a new conceptual construction of an arbitrary algebra of CDOs. The other example, called the spinor module, may be useful for a geometric theory of the Witten genus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.