Abstract

It is of considerable concern to establish chiral detection methods for revealing enantioselective interactions among chiral molecules. Surface-enhanced Raman scattering (SERS) spectroscopy is sensitive to molecular interaction due to bond variations. However, its application in chiral detection is underexplored. Inspired by the chiral selectivity toward glucose and amino acids in life, we herein propose a SERS strategy based on molecular interactions for the discrimination of d- and l-glucose (Glu) using chiral phenylalanine (Phe) decorated on gold nanoparticles as a chirality selector and Raman reporter. Interestingly, the SERS signal of l-Phe is enhanced by d-Glu but suppressed by l-Glu. In contrast, the SERS signal of d-Phe is increased by l-Glu but decreased by d-Glu. According to the above-observed intensity change (ΔI) of the SERS signal of Phe induced by Glu, it is easy to determine the chiral configurations (judged by the positive or negative sign of ΔI), enantiomeric excess (ee) values, and concentrations (estimated by the magnitude of ΔI) of Glu. Taking advantage of the high SERS enhancement and opposite enantiomeric effects on SERS signals, the proposed strategy enables enantiomeric discrimination at a low Glu concentration (10-6 mol/L) and is further exerted for the noninvasive detection of d-/l-Glu in saliva samples. In contrast, the common chiroptical analysis tool of circular dichroism (CD) spectroscopy failed to directly detect Glu enantiomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.