Abstract
We study bosonic and fermionic quantum two-leg ladders with orbital magnetic flux. In such systems, the ratio, $\nu$, of particle density to magnetic flux shapes the phase-space, as in quantum Hall effects. In fermionic (bosonic) ladders, when $\nu$ equals one over an odd (even) integer, Laughlin fractional quantum Hall (FQH) states are stabilized for sufficiently long ranged repulsive interactions. As a signature of these fractional states, we find a unique dependence of the chiral currents on particle density and on magnetic flux. This dependence is characterized by the fractional filling factor $\nu$, and forms a stringent test for the realization of FQH states in ladders, using either numerical simulations or future ultracold-atom experiments. The two-leg model is equivalent to a single spinful chain with spin-orbit interactions and a Zeeman magnetic field, and results can thus be directly borrowed from one model to the other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.