Abstract

AbstractThe creation of chirality on Earth and the development of chiral life have been discussed in this highlight. Convincing evidence for the introduction of chirality on Earth is still fragmentary. We believe that by a combination of chiral crystallization and formation of helical polymers with preferred chiral conformational structure is the key to this question. This concept of macromolecular asymmetry has inspired ideas and resulted in possible rules for how chiral life as we know it, could have been introduced. These investigations needed the understanding of the requirements for chiral crystallization, for the stereochemistry of the initial formation of helical polymers, the measurements of optical activity of solids and their coordination with the fundamentals of chirality. Spacial modeling of the “oligo‐crystallization” of sodium chlorate led to the conception of “isotactic” linear crystallization, which involves helical propagation. It seems to require unequal sizes of the cations and anions, which, by branching propagation leads to three‐dimensional chiral crystal formation. Linear “isotactic” propagation of crystallization seems to be equivalent to stereo and conformational specific polymerization. One and a half turns of the helix seems to be required for stereo‐ and conformational specificity, that is, between the pentamer and hexamer in chloral polymerization (11/3 or nearly 4/1 helix) and between trimer and tetramer for the sodium chlorate crystal (2/1 helix). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call