Abstract

A chiral covalent organic framework was synthesized, characterized, and incorporated into organic polymer monolithic capillary columns to provide chiral stationary phases for enantioseparations. The prepared monolithic capillary columns were characterized by scanning electron microscopy and elemental analysis. To obtain better enantioseparations, the columns' preparation conditions, and enantioseparation conditions were optimized. Baseline resolutions of several chiral compounds were obtained with good reproducibility and stability. Furthermore, the mechanism of chiral recognition was investigated using molecular docking with AutoDock. Docking results showed that the enantioselectivity factor rather than resolution is correlated with the binding free energy difference between enantiomers with the chiral covalent organic framework. And abundant acetoxy and nitrile groups as well as benzene rings in the chiral covalent organic framework are responsible for the enantioseparation ability of the chiral monolithic capillary columns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.