Abstract

Microwave three-wave mixing has emerged as a novel approach for studying chiral molecules in the gas phase. This technique employs resonant microwave pulses and is a non-linear and coherent approach. It serves as a robust method to differentiate between the enantiomers of chiral molecules and to determine the enantiomeric excess, even in complex chiral mixtures. Besides such analytical applications, the use of tailored microwave pulses allows us to control and manipulate chirality at the molecular level. Here, an overview of some recent developments in the area of microwave three-wave mixing and its extension to enantiomer-selective population transfer is provided. The latter is an important step towards enantiomer separation-in energy and finally in space. In the last section, we present new experimental results on how to improve enantiomer-selective population transfer to achieve an enantiomeric excess of about 40 % in the rotational level of interest using microwave pulses alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.