Abstract

Chiral carbon dots (CDs) are a novel luminescent zero-dimensional carbon-based nanomaterial with chirality. They not only have the advantages of good biocompatibility, multi-color-emission, easy functionalization, but also exhibits highly symmetrical chiral optical characteristics, which broadens their applicability to enantioselectivity of some chiral amino acids like cysteine and lysine, asymmetric catalysis as well as biomedicine in gene expression and antibiosis. In addition, the exploration of the excited state chirality of CDs has developed its excellent circularly polarized luminescence (CPL) properties, opening up a new application scenario like recognition of chiral light sources and anti-counterfeit printing with information encryption. This review mainly focuses on the mature synthesis approaches of chiral CDs, including chiral ligand method and supramolecular self-assembly method, then we consider emerging applications of chiral CDs in CPL, biosensing and biological effect. Finally, we concluded with a perspective on the potential challenges and future opportunities of such fascinating chiral CDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.