Abstract
As a class of functional proteins, enzymes possess inherent insignificant features, for instance, mediocre stability and membrane impermeability and reduced enzymatic activity after modification, which partly limit their biomedical applications. Thus, it is indispensable to exploit robust nanoreactors with high enzymatic activity and good stability and cell permeability. Here, the chiral carbon dots (CDs)-glucose oxidase (GOx) nanoreactors named LGOx and DGOx were constructed by the coassembly of GOx with L/D-CDs, respectively. L/DGOx can significantly enhance the activity of GOx and improve the efficient delivery of GOx to cancer cells. Moreover, these nanoreactors can generate hydrogen peroxide to efficaciously kill cancer cells and restrain tumor growth, and DGOx exhibits higher enzymatic activity than LGOx. According to our understanding, this is the first report about utilizing chiral CDs as vectors to construct effective CDs-enzyme nanohybrids for cancer therapy, which is envisioned to be a versatile strategy for multitudinous biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.