Abstract

Chiral Bronsted acid-catalyzed allyl(propargyl)boration of ortho-alkynyl benzaldehydes gives rise to ω-alkynyl homoallylic(homopropargylic)alcohols that can be further transformed to complex molecular scaffolds via subsequent hydroalkoxylation, ring-closing enyne metathesis (RCEYM), or intramolecular Pauson–Khand reaction (PKR). Optimizations of each two-step transformation is reported. A strong dependence between enantioselectivities and the nature of the substitution at the alkynyl moiety is observed, showcasing that the triple bond is not merely a spectator in this transformation. Density functional theory (DFT) calculations (M06-2X/6-311+G(d,p)–IEFPCM//B3LYP/6-31G(d)) show that this dependence is the result of the steric and electronic properties of the alkyne substituent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call