Abstract

Materials capable of circularly polarized luminescence (CPL) have generated intensive interest for their potential applications. However, constructing chiral molecules with tunable CPL signals remains a challenge. In this paper, two pairs of binaphthylamine based chiral donors R/S-2 and R/S-3 were synthesized by Pd-catalyzed C–N coupling and intramolecular oxidative coupling with good yields. Then three pairs of chiral D-A type molecules R/S-4∼6 can be synthesized by introducing two kinds of achiral acceptors. The extention of the chiral binaphthy skeleton endows these chiral compounds with CPL signals ranged from 417 nm to 544 nm in solutions and film states. The glum can be up to −2.9 × 10−3 for R-2 in solution. The introduction of terephthalonitrile as acceptor endow R/S-4 thermally activated delayed fluorescence (TADF). Furthermore, when benzophenone is chosen as achiral acceptor, the obtained chiral D-A molecules R/S-5 and R/S-6 can exhibit reversed CPL signals compared with their corresponding chiral donors. This work demonstrates the introduction of chiral D-A structure not only alters the wavelength of the CPL signals but also can reverse the CPL sign.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.