Abstract

A possible role that might have been played by ordered clusters at the air/water interface for the generation of homochiral oligopeptides under prebiotic conditions has been probed by a catalyzed polymerization of amphiphilic activated alpha-amino acids that assembled as two-dimensional (2-D) crystallites at this interface. Three type of processes are described: (i) polymerization of racemates of activated alpha-amino acids that undergo spontaneous resolution into enantiomorphous 2-D crystallites to yield racemic mixtures of oligopeptides enriched with the oligomers of homochiral sequence, (ii) enhanced formation of racemic mixtures of homochiral oligopeptides via lattice-controlled polymerization within 2-D racemic compounds and (iii) generation of homochiral oligopeptides of a single handedness from chiral non-racemic mixtures of monomers that self-assemble into two different phases, racemic crystallites composed from both enantiomers and enantiomorphous crystallites of the enantiomer in excess. The structures of the 2-D crystallites have been determined by grazing incidence X-ray diffraction and the diastereoisomeric composition of the oligopeptides by matrix-assisted laser-desorption time-of-flight mass spectrometry with enantio-labeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call