Abstract

Chiral materials are of particular interest and have a wide range of potential applications in life science, material science, spintronic, and optoelectronic devices. Two-dimensional (2D) hybrid organic-inorganic lead halide perovskites have attracted increasing attention. Incorporating the chiral organic ligands into the layered lead iodide frameworks would introduce strong chirality in pure 2D perovskites for potential applications in circularly polarized light (CPL) emission and detection; nonetheless, studies on those aspects are still in their infancy. Here, we report on the strong CPL emission and sensitive CPL detection in the visible-wavelength range in pure chiral ( R-/ S-MBA)2PbI4 (MBA = C6H5C2H4NH3) 2D perovskites, which are successfully synthesized with a needle shape and millimeter size by incorporating the chiral molecules. The chiral 2D perovskites ( R-MBA)2PbI4 and ( S-MBA)2PbI4 exhibit an average degree of circularly polarized photoluminescence (PL) of 9.6% and 10.1% at 77 K, respectively, and a maximum degree of the circularly polarized PL of 17.6% is achieved in ( S-MBA)2PbI4. The degree of circularly polarized PL dramatically decreases with increasing temperature, implying that the lattice distortion induced by the incorporated chiral molecules and/or temperature-dependent spin flipping might be the origin for the observed chirality. Finally, CPL detection has been achieved with decent performance in our chiral 2D perovskite microplate/MoS2 heterostructural devices. The high degree of the circularly polarized PL and excellent CPL detection together with the layered nature of pure chiral 2D perovskites enables them to be a class of very promising materials for developing and exploring spin associated electronic devices based on the chiral 2D perovskites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.