Abstract

In this paper, we present for the first time the realization of a 77 GHz chip-to-rectangular waveguide transition realized in an embedded Wafer Level Ball Grid Array (eWLB) package. The chip is contacted with a coplanar waveguide (CPW). For the transformation of the transverse electromagnetic (TEM) mode of the CPW line to the transverse electric (TE) mode of the rectangular waveguide an insert is used in the eWLB package. This insert is based on radio-frequency (RF) printed circuit board (PCB) technology. Micro vias formed in the insert are used to realize the sidewalls of the rectangular waveguide structure in the fan-out area of the eWLB package. The redistribution layers (RDLs) on the top and bottom surface of the package form the top and bottom wall, respectively. We present two possible variants of transforming the TEM mode to the TE mode. The first variant uses a via realized in the rectangular waveguide structure. The second variant uses only the RDLs of the eWLB package for mode conversion. We present simulation and measurement results of both variants. We obtain an insertion loss of 1.5 dB and return loss better than 10 dB. The presented results show that this approach is an attractive candidate for future low loss and highly integrated RF systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.