Abstract

AbstractChipset nanosensor design and fabrication are important for healthcare research and development. Herein, a functionalized chipset nanosensor is designed to monitor neurotransmitters (i.e., epinephrine (EP)) in human fluids. An interdigitated electrode array (IDA) is functionalized by N‐doped carbon nanobud (N‐CNB) and N‐doped carbon nanostructure (N‐CNS). The surface morphology of N‐CNB shows the formation of nanotubular‐like branches on sheets and micrometer‐size tubes. The N‐CNS design consists of the formation of aggregated sheets and particles in nanometer size. The irregular shape formation provides surface heterogeneity and numerous free spaces between the stacked nanostructures. N‐atoms ascertain highly active N‐CNS with multifunctional active centers, electron‐rich charged surface, and short distance pathway. The N‐CNB/IDA exhibits the best performance for EP signaling with high sensitivity and selectivity. The N‐CNB/IDA sensing performance for EP detection indicates the successful design of a highly selective and sensitive assay with low detection limit of 0.011 × 10−6 m and a broad linear range of 0.5 × 10−6 to 3 × 10−6 m. The N‐CNB/IDA exhibits a high degree of accuracy and reproducibility with RSD of 2.7% and 3.9%, respectively. Therefore, the chipset nanosensor of N‐CNB/IDA can be used for on‐site monitoring of EP in human serum samples and further used in daily monitoring of neuronal disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call