Abstract
The revolution in integrated circuits over the past 50 yr has produced inexpensive computing and communications systems that are powerful and portable. The technologies for these integrated chip-scale sensing systems, which will be miniature, lightweight, and portable, are emerging with the integration of sensors with electronics, optical systems, micromachines, microfluidics, and the integration of chemical and biological materials (soft/wet material integration with traditional dry/hard semiconductor materials). Hence, we stand at a threshold for health monitoring technology that promises to provide wearable biochemical sensing systems that are comfortable, inauspicious, wireless, and battery-operated, yet that continuously monitor health status, and can transmit compressed data signals at regular intervals, or alarm conditions immediately. In this paper, we explore recent results in chip-scale sensor integration technology for health monitoring. The development of inexpensive chip-scale biochemical optical sensors, such as microresonators, that are customizable for high sensitivity coupled with rapid prototyping will be discussed. Ground-breaking work in the integration of chip-scale optical systems to support these optical sensors will be highlighted, and the development of inexpensive Si complementary metal-oxide semiconductor circuitry (which makes up the vast majority of computational systems today) for signal processing and wireless communication with local receivers that lie directly on the chip-scale sensor head itself will be examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.