Abstract
ABSTRACT Detection of the cosmological neutral hydrogen signal from the Epoch of Reionization (EoR) and estimation of its basic physical parameters are principal scientific aims of many current low-frequency radio telescopes. Here we describe the Cosmological H i Power Spectrum Estimator (CHIPS), an algorithm developed and implemented with data from the Murchison Widefield Array, to compute the two-dimensional and spherically-averaged power spectrum of brightness temperature fluctuations. The principal motivations for CHIPS are the application of realistic instrumental and foreground models to form the optimal estimator, thereby maximizing the likelihood of unbiased signal estimation, and allowing a full covariant understanding of the outputs. CHIPS employs an inverse-covariance weighting of the data through the maximum likelihood estimator, thereby allowing use of the full parameter space for signal estimation (“foreground suppression”). We describe the motivation for the algorithm, implementation, application to real and simulated data, and early outputs. Upon application to a set of 3 hr of data, we set a 2σ upper limit on the EoR dimensionless power at k = 0.05 h ?> Mpc−1 of Δ k 2 < 7.6 × 10 4 ?> mK2 in the redshift range z = [6.2–6.6], consistent with previous estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.