Abstract

Due to uncertainties of future supplies of pine bark (PB) and peatmoss, ground Pinus taeda logs [pine chips (PC)] were compared to ground PB as a potential container substrate for japanese holly (Ilex crenata Thunb. `Chesapeake'), azalea (Rhododendron obtusum Planch. `Karen'), and marigold (Tagetes erecta Big. `Inca Gold'). Plants were potted in 2.8-L plastic containers 8 Apr. 2004 with either 100% PC, 100% PB, or 75% PC:25%PB (v/v), and glasshouse grown 8 weeks for marigold and 13 weeks for holly and azalea. Plant dry weights were higher for marigold grown in 100% PB compared to 100% PC but not different from plants grown in 75% PC:25% PB. Plant dry weights of azalea were higher in 100% pine bark than both substrates containing chips. There was no difference in shoot dry weight for japanese holly between the three substrates. Root dry weight was higher for 75% PC:25% PB than for 100% PB, but root weight of 100% PB and 100% PC was the same. The percent air space for the PC was higher than the PB substrate but container capacity and available water was not different for the three substrates. Substrate solution electrical conductivity (EC) for PC, was lower than that of PB, possibly due to greater leaching with the more porous PC and nutrient retention by the PC. These factors could account for the cases where larger plants developed with the PB substrate. Nutrient analysis of the substrate solution indicated that there are no toxic nutrient levels associated with PC. The pH of PC is also acceptable for plant culture. As well, there was no apparent shrinkage due to decomposition during the course of this short-term experiment. Pine chips, therefore, offer potential as a container substrate for greenhouse and nursery crops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.