Abstract

Abstract Starting from the chip-firing game of Bjorner and Lovasz we consider a generalization to vector addition systems that still admit algebraic structures as sandpile group or sandpile monoid. Every such vector addition language yields an antimatroid. We show that conversely every antimatroid can be represented this way. The inclusion order on the feasible sets of an antimatroid is an upper locally distributive lattice. We characterize polyhedra, which carry an upper locally distributive structure and show that they can be modelled by chip-firing games with gains and losses. At the end we point out a connection to a membership problem discussed by Korte and Lovasz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.