Abstract

Mutation in leucine-rich repeat kinase-2 (LRRK2) is the most common cause of late-onset Parkinson's disease (PD). Although most cases of PD are sporadic, some are inherited, including those caused by LRRK2 mutations. Because these mutations may be associated with a toxic gain of function, controlling the expression of LRRK2 may decrease its cytotoxicity. Here we show that the carboxyl terminus of HSP70-interacting protein (CHIP) binds, ubiquitinates, and promotes the ubiquitin proteasomal degradation of LRRK2. Overexpression of CHIP protects against and knockdown of CHIP exacerbates toxicity mediated by mutant LRRK2. Moreover, HSP90 forms a complex with LRRK2, and inhibition of HSP90 chaperone activity by 17AAG leads to proteasomal degradation of LRRK2, resulting in increased cell viability. Thus, increasing CHIP E3 ligase activity and blocking HSP90 chaperone activity can prevent the deleterious effects of LRRK2. These findings point to potential treatment options for LRRK2-associated PD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.