Abstract

Chip Package Interaction (CPI) gained a lot of importance in the last years. The reason is twofold. First, advanced node IC technologies requires dielectrics in the BEOL (back-end-of-line) with a decreasing value for the dielectric constant k. These so-called (ultra) low-k materials have a reduced stiffness and reduced adhesion strength to the barrier materials, making the BEOL much more vulnerable to externally applied mechanical stress due to packaging. Secondly, advanced packaging technologies such as 3D stacked IC’s use thinned dies (down to 25μm) which can cause much higher stresses at transistor level, resulting in electron mobility shifts of the transistors. Also the copper TSV (through-silicon-via) generates local stress which affects the device performance. This paper considers both the packaging impact on BEOL integrity and transistor mobility shifts for 3D stacked IC (integrated circuit) technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.