Abstract

We prove that the paint number of the complete bipartite graph $K_{N,N}$ is $\log N + O(1)$. As a consequence, we get that the difference between the paint number and the choice number of $K_{N,N}$ is $\Theta(\log \log N)$. This answers in the negative the question of Zhu (2009) whether this difference, for all graphs, can be bounded by a common constant. By a classical correspondence, our result translates to the framework of on-line coloring of uniform hypergraphs. This way we obtain that for every on-line two coloring algorithm there exists a $k$-uniform hypergraph with $\Theta(2^k)$ edges on which the strategy fails. The results are derived through an analysis of a natural family of chip games.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.