Abstract
Runx1 is a key factor in the generation and maintenance of hematopoietic stem cells. Improper expression and mutations in Runx1 are frequently implicated in human leukemia. Here, we report that CHIP, the carboxyl terminus of Hsc70-interacting protein, also named Stub1, physically interacts with Runx1 through the TPR and Charged domains in the nucleus. Over-expression of CHIP directly induced Runx1 ubiquitination and degradation through the ubiquitin–proteasome pathway. Interestingly, we found that CHIP-mediated degradation of Runx1 is independent of the molecular chaperone Hsp70/90. Taken together, we propose that CHIP serves as an E3 ubiquitin ligase that regulates Runx1 protein stability via an ubiquitination and degradation mechanism that is independent of Hsp70/90.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.