Abstract

This paper establishes new connections between the representation theory of finite groups and sandpile dynamics. Two classes of avalanche-finite matrices and their critical groups (integer cokernels) are studied from the viewpoint of chip-firing/sandpile dynamics, namely, the Cartan matrices of finite root systems and the McKay–Cartan matrices for finite subgroups G of general linear groups. In the root system case, the recurrent and superstable configurations are identified explicitly and are related to minuscule dominant weights. In the McKay–Cartan case for finite subgroups of the special linear group, the cokernel is related to the abelianization of the subgroup G. In the special case of the classical McKay correspondence, the critical group and the abelianization are shown to be isomorphic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.