Abstract

A whole-cell bioassay has been performed using Escherichia coli sensor strains immobilized in a chip assembly, in which a silicon substrate is placed between two poly(dimethylsiloxane) (PDMS) substrates. Microchannels fabricated on the two separate PDMS layers are connected via perforated microwells on the silicon chip, and thus, a three-dimensional microfluidic network is constructed in the assembly. Bioluminescent sensor strains mixed with agarose are injected into the channels on one of the two PDMS layers and are immobilized in the microwells by gelation. Induction of the firefly luciferase gene expression in the sensor strains can be easily carried out by filling the channels on the other layer with sample solutions containing mutagen. Bioluminescence emissions from each well are detected after injection of luciferin/ATP mixtures into the channels. In this assay format using two multichannel layers and one microwell array chip, the interactions between various types of samples and strains can be monitored at each well on one assembly in a combinatorial fashion. Using several genotypes of the sensor strains or concentrations of mitomycin C in this format, the dependence of bioluminescence on these factors was obtained simultaneously in the single screening procedure. The present method could be a promising on-chip format for high-throughput whole-cell bioassays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call