Abstract

Limitation of damage after ischemia and reperfusion injury to the myocardium remains an elusive clinical goal. Previous studies have suggested that molecular chaperones, which include members of the heat shock protein (Hsp) family, may have cardioprotective effects, although the protective role of endogenous chaperones has not been well documented. CHIP (carboxyl terminus of Hsp70-interacting protein) is a cochaperone/ubiquitin ligase that integrates the response to stress at multiple levels. We tested the response of CHIP(-/-) mice to in vivo ischemia and reperfusion injury induced by left anterior descending coronary artery ligation. Compared with wild-type littermates, CHIP(-/-) mice had decreased survival and increased incidence of arrhythmias during reperfusion. The size of myocardial infarction, as assessed by the ratio of infarct area to area at risk, was 50% greater in CHIP(-/-) mice. Increased infarct size was accompanied by impaired upregulation of the chaperone Hsp70 after ischemia-reperfusion injury. In situ analysis also indicated that hearts of CHIP(-/-) mice were more prone to develop apoptosis in cardiomyocytes and especially endothelial cells of intramural vessels. Previous studies have found that CHIP plays a central role in maintaining protein quality control and coordinating the response to stress. The present data indicate that these functions of CHIP provide a critical cardioprotective effect in the setting of ischemia-reperfusion injury due in part to increased apoptosis in cardiac cells. Quality control mechanisms therefore may be underappreciated clinical targets for maximizing myocardial protection after injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.