Abstract

High-quality ground observation networks are an important basis for scientific research. Here, an automatic soil observation network for high-resolution satellite applications in China (SONTE-China) was established to measure both pixel- and multilayer-based soil moisture and temperature. SONTE-China is distributed across 17 field observation stations with a variety of ecosystems, covering both dry and wet zones. In this paper, the average root mean squared error (RMSE) of station-based soil moisture for well-characterized SONTE-China sites is 0.027 m3/m3 (0.014~0.057 m3/m3) following calibration for specific soil properties. The temporal and spatial characteristics of the observed soil moisture and temperature in SONTE-China conform to the geographical location, seasonality and rainfall of each station. The time series Sentinel-1 C-band radar signal and soil moisture show strong correlations, and the RMSE of the estimated soil moisture from radar data was lower than 0.05 m3/m3 for the Guyuan and Minqin stations. SONTE-China is a soil moisture retrieval algorithm that can validate soil moisture products and provide basic data for weather forecasting, flood forecasting, agricultural drought monitoring and water resource management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.