Abstract
Personal name disambiguation is a significant issue in natural language processing, which is the basis for many tasks in automatic information processing. This research explores the Chinese personal name disambiguation based on clustering technique. Preprocessing is applied to transform raw corpus into standardized format at the beginning. And then, Chinese word segmentation, part‐of‐speech tagging, and named entity recognition are accomplished by lexical analysis. Furthermore, we make an effort to extract features that can better disambiguate Chinese personal names. Some rules for identifying target personal names are created to improve the experimental effect. Additionally, many calculation methods of feature weights are implemented such as bool weight, absolute frequency weight, tf‐idf weight, and entropy weight. As for clustering algorithm, an agglomerative hierarchical clustering is selected by comparison with other clustering methods. Finally, a labeling approach is employed to bring forward feature words that can represent each cluster. The experiment achieves a good result for five groups of Chinese personal names.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.