Abstract

To investigate the molecular mechanisms whereby the Chinese medicinal compound Tongxinluo improves vascular endothelial function through studying the induction of endothelial nitric oxide synthase (eNOS) and its upstream signaling pathway. Hyperhomocysteinemia was induced in Wistar rats by a methionine-rich diet followed by Tongxinluo treatment. The aorta ring was isolated for measuring vascular dilation of aorta and eNOS expression. Human umbilical vein endothelial cells (HUVECs) were transfected with AP-1, NF-κB, HRE or eNOS reporter plasmid followed by Tongxinluo exposure. Expression of the reporter genes was measured by luciferase assay. The level of eNOS was studied by western blot and the nitric oxide content was measured using the nitrate reductase method. HUVECs were also transiently transfected with the dominant negative mutant of HIF-1, PI-3K or Akt to explore the role of HIF and PI-3K/Akt pathway in eNOS induction by Tongxinluo. Tongxinluo could significantly up-regulate the expression of eNOS in the aortic tissue and improve the endothelium-dependent vasodilation of the aorta ring. Additionally, Tongxinluo at various doses could significantly enhance the expression of HRE and eNOS reporter gene as well as up-regulate the protein level of eNOS. Meanwhile, Tongxinluo caused a dose-dependent increase in the NO content in the supernatant of HUVECs. Suppression of HIF-1 activation by DN-HIF or inhibition of PI-3K/Akt pathway by ΔP85 or DN-Akt both attenuated HRE reporter gene activation and eNOS induction by Tongxinluo. Tongxinluo, a compound Chinese traditional medicine, up-regulates the expression of eNOS via the PI-3K/Akt/HIF-dependent signaling pathway, thus improving the endothelium-dependent vasodilation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.