Abstract

AbstractRapid urbanization boosts the material demand of cities and leads to serious environmental problems, such as water shortage and air pollution. To achieve better governance of cities, stakeholders need to deeply understand urban material utilization. Taking 327 cities in China as examples, this study analyzes the urban material characteristics from a metabolic perspective. We investigated the spatiotemporal changes in the material base of these cities from 2000 to 2020, including material flow and material stock. We further explored the allometric growth patterns of urban material flow and material stock at different scales (e.g., individual, group, and community). Results show that cities have metabolic processes as natural organisms; they differentiate into many types and exhibit allometric growth patterns. There is a consistency of material metabolic patterns in most cities. The growth of material flows (+43%) and material stocks (+135%) was evident in all cities during 2000–2020. However, the material metabolism of Chinese cities exhibits diverse allometric growth patterns across the individual, group, and community scales. This study can provide simple but effective quantitative indicators for the investigation of urban material utilization, and can support distinct policy implications for sustainable urban material‐based planning and management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.