Abstract

China has experienced a huge socioeconomic advancement over the past few decades, resulting in great change in land use and land cover. To date, negligible attention has been given to examining the socioeconomic changes in the context of land-use change, especially from a futuristic standpoint. However, motivated by China’s latest carbon neutrality target, this study analyzes the prospective changes in socioeconomic status, and carbon dioxide emission in the context of future land-use change, focusing on three future periods: 2026–2030 (carbon dioxide peak phase), 2056–2060 (carbon-neutral phase), and 2080–2099 (long-term period). In this regard, recently published land-use products under seven Shared Socioeconomic Pathways-based scenarios (SSP1-1.9, SSP1-2.6, SSP4-3.4, SSP2-4.5, SSP4-6.0, SSP3-7.0, and SSP5-8.5) as part of the CMIP6, as well as the projected GDP and population under five socioeconomic scenarios are used. To estimate socioeconomic change over prominent land-use types (urban), we combined five socioeconomic scenarios with seven corresponding SSPs-based land-use change scenarios (SSP1 with SSP1-1.9 and SSP1-2.6; SSP2 with SSP2-4.5; SSP3 with SSP3-7.0; SSP4 with SSP4-3.4 and SSP4-6.0; and SSP5 with SSP5-8.5 scenarios). Our results reveal that rapid urban land expansion in the future is the most dominant aspect in China. In the carbon neutrality phase (2056–2060), urban land is expected to expand ~80% more than that of the reference period (1995–2014). In the spatial aspect, the expansion of urban land is mainly prominent in the eastern and central parts of China. For socioeconomic changes, the most prominent increase in the urban population is estimated at 630.8% under SSP5-8.5 for the 2056–2060 period compared to the reference period. Regarding GDP for the urban area, industrial GDP will be higher than service GDP in the carbon emission peak phase (2026–2030), but it is projected to be overtaken by service GDP for the carbon-neutral target (2056–2060) and long-term periods (2080–2099). Further, the CO2 emission in China was found to increase with intensified urban land for the historical period (1995–2019). In the future, the largest increase in CO2 emission from the urban area is anticipated under SSP5-8.5 in the carbon-neutral target (2056–2060) phase, while CO2 emission will largely decline after (2056–2060) under SSP1-1.9, SSP1-2.6, and SSP4-3.4. Importantly, population change is expected to be the most predominant factor in future urban land expansion in China. These findings highlight the importance of well-governed urban-land development as a key measure to achieve China’s carbon neutrality goal.

Highlights

  • IntroductionThe land-use effect plays a central role in future environmental change

  • It is documented that land-use change and agricultural activities largely contribute to global greenhouse gas (GHG) emissions

  • The quantification of land-use projection indicates that urban land is expected to experience rapid growth over China in all periods and scenarios, where the most dominant expansion is apparent in the carbon neutrality target (2056–2060) under SSP5-8.5

Read more

Summary

Introduction

The land-use effect plays a central role in future environmental change. Land-use change has a great influence on the local, regional, and global climate [1–3]. It indicates the direct reflection of anthropogenic activities as well as close interconnection with the ecosystem, water resources, and atmosphere [4,5]. It is documented that land-use change and agricultural activities largely contribute to global greenhouse gas (GHG) emissions. It is expected that land-use dynamics for future perspectives would play an inevitable role in the process of attaining the global CO2 mitigation target. A better understanding of how future land-use change may occur and affect other land covers is vital to extrude the social and environmental problems that pose challenges to sustainable socio-economic advancement

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.