Abstract
We examined whether subacute arsenic exposure can reduce paracetamol-mediated antipyretic activity by affecting COX pathway and cannabinoid CB1 receptor regulation. Rats were preexposed to elemental arsenic (4 ppm) as sodium arsenite through drinking water for 28 days. Next day pyrexia was induced with lipopolysaccharide and paracetamol's (200 mg/kg, oral) antipyretic activity was assessed. The activities of COX-1 and COX-2, the levels of PGE2, TNF-α and IL-1β and expression of CB1 receptors were assessed in brain. Arsenic inhibited paracetamol-mediated antipyretic activity. COX-1 activity was not affected by any treatments. Paracetamol decreased COX-2 activity, levels of PGE2, TNF-α and IL-1β and caused up-regulation of CB1 receptors. Arsenic caused opposite effects on these parameters. In the arsenic-preexposed rats, paracetamol-mediated effects were attenuated, while CB1 receptor up-regulation was reversed to down-regulation. Results suggest that elevated COX-2 activity and reduced CB1 expression could be involved in the arsenic-mediated attenuation of the antipyretic activity of paracetamol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.