Abstract

Accurate and sensitive identification of peptides from MS/MS spectra is a very challenging problem in computational shotgun proteomics. To tackle this problem, spectral library search has been one of the competitive solutions. However, most existing library search tools were developed on the basis of one peptide per spectrum, which prevents them from working properly on chimeric spectra where two or more peptides are co-fragmented. In this work, we present a new library search tool called ChimST, which is particularly capable of reliably identifying multiple peptides from a chimeric spectrum. It starts with associating each query MS/MS spectrum with MS precursor features. For each precursor feature, there is a list of peptide candidates extracted from an input spectral library. Then, it takes one peptide candidate from each associated feature and scores how well they could collectively interpret the query spectrum. The highest-scoring set of peptide candidates are finally reported as the identification of the query spectrum. Our experimental tests show that ChimST could significantly outperform the three state-of-the-art library search tools, SpectraST, reSpect, and MSPLIT, in terms of the numbers of both peptide-spectrum matches and unique peptides, especially when the acquisition isolation window is broad.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call