Abstract

This work proposes a way of modelling two-dimensional complex meshes using elliptic equations, which the computational grid coincides with the problem geometry, making computational processing more suitable. A multiblock technique was used in order to achieve a better representation of the problem domain. In this way, numerical simulations of the movement and dispersion of pollutant emissions in the atmosphere are presented in the generated domains, using the Navier-Stokes pollutant transport equations. The curvilinear coordinates and the finite difference method are used for the discretization. The model was verified in two tests. In the first test, three cases were proposed, with geometries containing a chimney followed by an obstacle, using different chimney heights, and the obstacle height was fixed. The test aims to verify the vortices appearance, in the blocks, to obtain agreement with as presented in the literature. In the second test, the geometry is described by a chimney and an obstacle that represents one of the mountains in the valley. The performed tests made possible to verify that the height of the chimney can be considered a determining factor to describe the dispersion of pollutants, as well as their concentration in the proximity of industrial areas.

Highlights

  • Numerical simulations of the movement and dispersion of pollutant emissions in the atmosphere are presented in the generated domains, using the Navier-Stokes pollutant transport equations

  • To evaluate the two-dimensional meshes obtained in the curvilinear coordinate system, besides the velocity field when solving the Navier-Stokes equations and the dispersion of the pollutant concentration by solving the transport equation, two tests were performed

  • The second test describes a geometry that represents a valley, which portrays a test of environmental interest

Read more

Summary

Introduction

Several sources are responsible for emitting such pollutants and can be classified as natural, such as natural fires and volcanic emissions, or anthropogenic like burning fossil fuels in factories [4] [5] [6]. Understanding how emissions from these sources occur, especially anthropogenic ones, we try to minimize these damages [7] [8] [9]. Several methods have been used to evaluate pollutant dispersion, considering geometries with point sources like chimney or obstacles [13] [14] [15]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call