Abstract

The 23-amino acid ectodomain of influenza virus M2 protein (M2e) is highly conserved among human influenza virus variants and represents an attractive target for developing a universal vaccine. Although this peptide has limited potency and low immunogenicity, the degree of M2e density has been shown to be a critical factor influencing the magnitude of epitope-specific responses. The aim of this study was to design a chimer protein consisting of three tandem repeats of M2e peptide sequence fused to the Leishmania major HSP70 gene and evaluate its characteristics and immunogenicity. The structure of the deduced protein and its stability, aliphatic index, biocomputed half-life and the anticipated immunogenicity were analyzed by bioinformatics software. The oligonucleotides encoding 3M2e and chimer 3M2e-HSP70 were expressed in Escherichia coli and affinity purified. The immunogenicity of the purified recombinant proteins was preliminary examined in mouse model. It was predicted that fusion of HSP70 to the C-terminal of 3M2e peptide led to increased stability, hydropathicity, continuous B cell epitopes and antigenic propensity score of chimer protein. Also, the predominant 3M2e epitopes were not hidden in the chimer protein. The initial in vivo experiment showed that 3M2e-HSP chimer protein stimulates specific immune responses. In conclusion, the results of the current study suggest that 3M2e-HSP chimer protein would be an effective universal subunit vaccine candidate against influenza infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.