Abstract

Exchange of the non coding regions of the NP segment between type A and C influenza viruses was used to demonstrate the importance not only of the proximal panhandle, but also of the initial distal panhandle strength in type specificity. Both elements were found to be compulsory to rescue infectious virus by reverse genetics systems. Interestingly, in type A influenza virus infectious context, the length of the NP segment 5′ NC region once transcribed into mRNA was found to impact its translation, and the level of produced NP protein consequently affected the level of viral genome replication.

Highlights

  • Influenza viruses are members of the Orthomyxoviridae family and are classified into three antigenic types, A, B and C

  • A series of recombinant viruses based on type A and C influenza virus reverse genetics systems were constructed to identify the parts in the non coding (NC) regions of the NP segment that are important for type specificity

  • Using an original approach that aimed at exchanging the NC regions of influenza virus type A by those of type C and reciprocally, we showed the importance of the proximal panhandle and of the strength of the initial distal panhandle in type specificity for the NP segment

Read more

Summary

Introduction

Influenza viruses are members of the Orthomyxoviridae family and are classified into three antigenic types, A, B and C. They have a negative-polarity RNA genome segmented into eight (type A and B) or seven (type C) single-stranded molecules. In the nucleus of infected cells, the messenger RNAs (mRNAs) are products of a transcription process involving a cap-snatching mechanism: the mRNA synthesis is initiated with capped RNA primers that are cleaved from host cell mRNAs. Transcription into mRNA terminates 17 to 22 nucleotides (nt) upstream of the 59 end of the genomic vRNA template at a stretch of five to seven uridine residues used as polyadenylation signal. Anti-termination occurs at the poly U sequence during the cRNA synthesis which, itself, is used as a template for the synthesis of the genomic vRNAs [1]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.