Abstract

Mouse teratocarcinoma cells from the OTT6050 ascites tumor were established in tissue culture and selected for 5-bromodeoxyuridine (BrdUrd) resistance. The embryonal carcinoma cells grew without a feeder layer, remained deficient for thymidine kinase (EC 2.7.1.75), and differentiated like the original tumor into various tissues after subcutaneous injection into 129 mice. We fused the BrdUrd-resistant mouse teratocarcinoma cells with HT1080-6TG human diploid fibrosarcoma cells deficient in hypoxanthine phosphoribosyltransferase (EC 2.4.2.8) and selected for hybrid cells in hypoxanthine/aminopterin/thymidine medium. The resulting hybrid cells segregated human chromosomes quickly and retained one to three human chromosomes including chromosome 17 that carries the human genes for thymidine kinase and galactokinase (EC 2.7.1.6). Single hybrid cells from five independent clones containing human chromosome 17 were injected into mouse blastocysts bearing several genetic markers that affect the coat color phenotype and strain-specific enzyme variants in order to detect tissue differentiation derived from the injected cells. After the injection of single hybrid cells into a total of 103 experimental blastocysts that had been surgically transferred to pseudopregnant foster mothers, 49 mice were born and 2 of them clearly revealed coat mosaicism. In 2 of 17 mice thus far analyzed, the injected hybrid cells proved to be capable of participating substantially in development of seven different organs. However, human gene products have not yet been detected unequivocally in those tissues and weak human-specific galactokinase activity could be recovered only from two mosaic tissues. Our results demonstrate that, after in vitro culture and selection, at least some of the human-mouse hybrid cells still retain their in vivo potential to differentiate and become functionally integrated in the living organism. It now seems feasible to cycle mouse teratocarcinoma cells carrying human genetic material through mice via blastocyst injection to study human gene expression during differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.