Abstract

The alpha-subunit of G proteins of the G(12/13) family stimulate Rho by their direct binding to the RGS-like (RGL) domain of a family of Rho guanine nucleotide exchange factors (RGL-RhoGEFs) that includes PDZ-RhoGEF (PRG), p115RhoGEF, and LARG, thereby regulating cellular functions as diverse as shape and movement, gene expression, and normal and aberrant cell growth. The structural features determining the ability of G alpha(12/13) to bind RGL domains and the mechanism by which this association results in the activation of RGL-RhoGEFs are still poorly understood. Here, we explored the structural requirements for the functional interaction between G alpha(13) and RGL-RhoGEFs based on the structure of RGL domains and their similarity with the area by which RGS4 binds the switch region of G alpha(i) proteins. Using G alpha(i2), which does not bind RGL domains, as the backbone in which G alpha(13) sequences were swapped or mutated, we observed that the switch region of G alpha(13) is strictly necessary to bind PRG, and specific residues were identified that are critical for this association, likely by contributing to the binding surface. Surprisingly, the switch region of G alpha(13) was not sufficient to bind RGL domains, but instead most of its GTPase domain is required. Furthermore, membrane localization of G alpha(13) and chimeric G alpha(i2) proteins was also necessary for Rho activation. These findings revealed the structural features by which G alpha(13) interacts with RGL domains and suggest that molecular interactions occurring at the level of the plasma membrane are required for the functional activation of the RGL-containing family of RhoGEFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.