Abstract

Double-stranded RNA (dsRNA), the unique trigger of RNA interference, could be used as potential pesticides for the management of storage insects. High species specificity greatly improves the biosafety of dsRNAs. However, there are usually more than one insect species in real circumstances. In this study, we present a new strategy that broadens the control spectrum of a formulation using single dsRNA fragments. First, effective target genes were selected for each insect pest, here including Rhyzopertha dominica and Blattella germanica. Then, a template was prepared by conjugating various fragments from each of the selected genes. With this template, a piece of chimeric dsRNA was synthesized, and, thus, regional complementary specificity for genes from different insects was harnessed. Finally, injection treatments with this chimeric dsRNA demonstrated that each gene was selectively silenced, and the insects of both species were effectively killed by continuously feeding the chimeric dsRNA. Meanwhile, the results also demonstrated that the toxicity of chimeric dsRNA for non-target organisms, including Zophobas atratus and Periplaneta americana, could be low. This is the first description of a single dsRNA fragment accurately targeting several pest species, and the method provides promise of novel tailor-made biopesticides in the future management of storage insects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call