Abstract

T cells edited by chimeric antigen receptors (CAR) have shown great potential in the treatment of tumors, especially malignant blood tumors. However, there remain many obstacles in the CAR-T therapy against solid tumors, such as the expansion of CAR-T cells ex vivo and the exhaustion of CAR-T cells in vivo. In order to solve these problems, we described a novel CAR which is targeting GPC3 by expressing CD28 co-stimulation domain and CD3z ITAM (G328z), meanwhile co-expressing ICOSL extracellular and transmembrane region fused with 41BB cytoplasmic domain (G328z-ICOSL-41BB). Compared with G328z, G328z-ICOSL-41BB fusion protein significantly reinforced the expansion ability of CAR-T cells ex vivo, and prolonged the survival time of mice with hepatocellular carcinoma. We now demonstrate that the enhancement of CAR-T cell activity is dependent on the enhanced PI3K signaling pathway and up-regulated expression of Bcl2 to inhibit apoptosis and promote proliferation of CAR-T cells. Besides, the CAR with ICOSL-41BB fusion protein have been strengthened significantly in comparison with fusing ICOSL protein only, which might be caused by the fact that ICOSL-41BB not only supplies ICOS signal for other cells, but also provides 41BB signal for itself. Consequently, CARs with ICOSL-41BB fusion protein could increase the therapeutic efficacy against solid tumors in vivo compared with the G328z CAR, which might further assist the development of potent and durable T cell therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.