Abstract

Chimeras are complex spatiotemporal patterns that emerge as coexistence of both coherent and incoherent groups of coupled dynamical systems. Here, we investigate the emergence of chimera states in nonlocal networks of type-I Morris-Lecar neurons coupled via chemical synapses. This constitutes a more realistic neuronal modeling framework than previous studies of chimera states, since the Morris-Lecar model provides biophysically more relevant control parameters to describe the activity in actual neural systems. We explore systematically the transitions of dynamic behavior and find that different types of synchrony appear depending on the excitability level and nonlocal network features. Furthermore, we map the transitions between incoherent states, traveling waves, chimeras, coherent states, and global amplitude death in the parameter space of interest. This work contributes to a better understanding of biological conditions giving rise to the emergence of chimera states in neural medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.