Abstract

We investigate the robustness of chimera states under the influence of a nonlinear coupling in the form of a power law with exponent α. Taking as working example the Leaky Integrate-and-Fire model coupled in a 1D ring geometry, we show that the chimera states prevail for large values of the exponent α and small values of the coupling strength, while full synchronization is observed in the opposite ends. Our numerical results indicate that the coupling range R does not influence the frequency of oscillations in the coherent or in the incoherent domains. To the contrary, the R value affects the form of the chimera state: the size of the incoherent domains increase monotonically with R in expense of the size of the coherent ones. As an added value, our numerical results demonstrate that the frequency of oscillations decreases monotonically with the power exponent α. This feature can be useful in controlling the frequency of a network of oscillators by simply varying the nonlinearity exponent in the coupling, without modifying any of the other network attributes or parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.