Abstract

More than a decade ago, a surprising coexistence of synchronous and asynchronous behavior called the chimera state was discovered in networks of nonlocally coupled identical phase oscillators. In later years, chimeras were found to occur in a variety of theoretical and experimental studies of chemical and optical systems, as well as models of neuron dynamics. In this work, we study two coupled populations of pendulum-like elements represented by phase oscillators with a second derivative term multiplied by a mass parameter $m$ and treat the first order derivative terms as dissipation with parameter $\epsilon>0$. We first present numerical evidence showing that chimeras do exist in this system for small mass values $0<m<<1$. We then proceed to explain these states by reducing the coherent population to a single damped pendulum equation driven parametrically by oscillating averaged quantities related to the incoherent population.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.