Abstract

Arrays of identical limit-cycle oscillators have been used to model a wide variety of pattern-forming systems, such as neural networks, convecting fluids, laser arrays and coupled biochemical oscillators. These systems are known to exhibit rich collective behavior, from synchrony and traveling waves to spatiotemporal chaos and incoherence. Recently, Kuramoto and his colleagues reported a strange new mode of organization — here called the chimera state — in which coherence and incoherence exist side by side in the same system of oscillators. Such states have never been seen in systems with either local or global coupling; they are apparently peculiar to the intermediate case of nonlocal coupling. Here we give an exact solution for the chimera state, for a one-dimensional ring of phase oscillators coupled nonlocally by a cosine kernel. The analysis reveals that the chimera is born in a continuous bifurcation from a spatially modulated drift state, and dies in a saddle-node collision with an unstable version of itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.